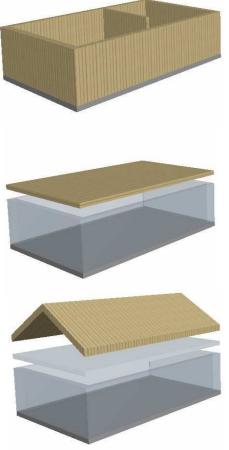


Parts catalogue

1. System Holz 100

1.1 Thoma Holz100 Wall systems H100-W 1.2 Thoma Holz100 Ceiling systems H100-DE 1.3 Thoma Holz100 Roof systems H100-DA	4 10 11
2. Details	
2.1 Standard connections 2.2 Other connections	12 16
3. Constructions	
3.1 External walls3.2 Inserted ceilings3.3 Pitched roofs3.4 Flat roof construction	21 26 29 31
4. Installations	32


1. System Thoma Holz100

1. System Thoma Holz100

Description of the systems:

- W <u>W</u>all systems
- DE Ceiling systems
- DA Roof systems

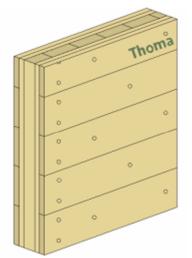
Thoma Holz100 – one system – a complete house

Holz100 Wall systems (W) Holz100 Standard Holz100 Thermal Holz100 Soundproofing

Holz100 Ceiling systems (DE)

Holz100 Roof systems (DA)

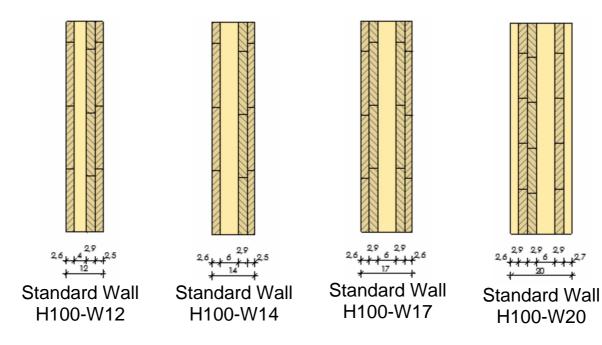
assemble into an "inhabitable" bare shell.


Assembly time for a single family house (approx. 150m² living space) <u>1 day</u>

1.1 Wall systems H100-W

Holz100 Standard walls

Types of wood: Part: spruce/ fir/ pine/ larch Dowelling: hardwood



The Thoma <u>Holz100 Standard parts</u> consist of layers of wooden boards with a thickness of 20mm to 60mm, which are cross laminated (horizontally, vertically and diagonally) both outside and inside, and connected to a standing core or to a top and bottom belt of 40 or 80mm with beech wood dowels (approx. d = 20mm) which are set as a raster.

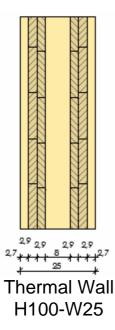
The external walls are fitted at the factory with one layer of house wrap which is securely placed between two layers of boards.

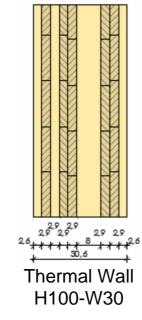
The mechanically compressed and dust-dry hardwood dowels are hydraulically pressed in, they get moist in the process by absorbing additional ambient humidity, and swell up to connect non-detachably to surrounding wood.

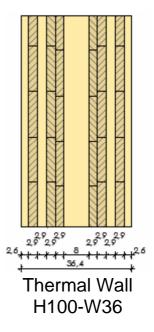
Synthetic resin glues or nails are not being used, so that the result is a solid wood wall (up to $3 \times 8m$ in size, and up to 40cm thick), which contains nothing but pure wood.

Holz100 Thermal walls

The Thoma <u>Holz100 Thermal walls</u> - similar to standard walls - consist of layers of wooden boards with a thickness of 20mm to 80mm. What's different are the grooves milled into individual layers of wood.

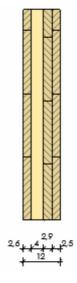

The grooves milled into the layers of wood (integrated structural insulation) function within the Holz100 wall laminate as macroscopic air cushions without circulation, and reduce the wall's thermal conductivity which results in a substantially improved thermal insulation.


At their full static load carrying capacity, the Holz100 Thermal walls show parameters otherwise reserved solely to insulation materials (lambda value of Holz100_{Thermal} = $0.079 \text{ W/m}^2\text{K}$).


The Thermal walls are manufactured in the following thickness versions:

- 25.0cm type W25
- 30.6cm type W30
- 36.4cm type W36

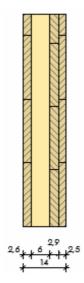
The Thoma Holz100 Thermal walls make it possible for external walls to have a very high energy standard with only a little additional thickness for insulation. Our research work combines excellent technical parameters with a background of building-specific physical properties, which not least minimise the building cost.



H100-W12

General data

Thickness of part Functionality Core layer Surface layer Construction Layers, left to right: Area density 12.0cm inner wall, not supporting 40mm horizontal 4 layers $h - K - d - h^*$ approx. 55kg/m²


Thoma 🖄

Building physics data

Bulk density 450kg/m³ Thermal conductivity lambda value not relevant

Fire protection Burn-off according to certificate 0.9mm/min.

H100-W14

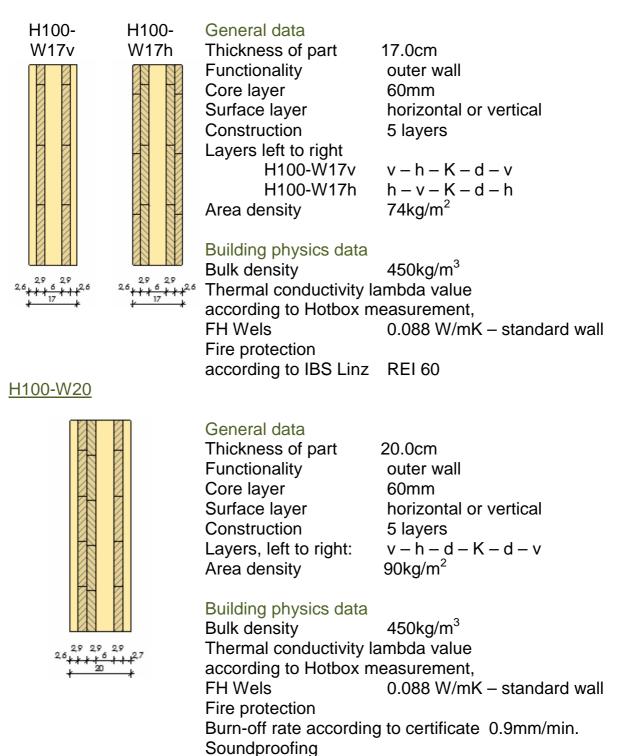
General data

Thickness of part14.0cmFunctionalityinner wall, supportingCore layer60mmSurface layerhorizontalConstruction4 layersLayers, left to right:h - K - d - hArea density 65 kg/m^2

Building physics data

Bulk density 450kg/m³ Thermal conductivity lambda value not relevant Fire protection Burn-off according to certificate 0.9mm/min. Soundproofing according to TU Graz Rw = 39dB

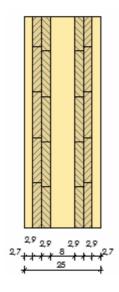
^{*} h = horozontal, v = vertical, d = diagonal, K = core layer

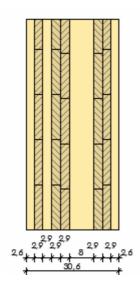


2) Outer wall systems

The surface layers of outer walls can be mounted horizontally (h) or vertically (v). For example for the H100-W17:

- H100-W17/v (for vertical surface layers)
- H100-W17/h (for horizontal surface layers)


<u>H100-W17</u>


according to TU Graz Rw = 41dB

<u>H100-W25</u>

H100-W30

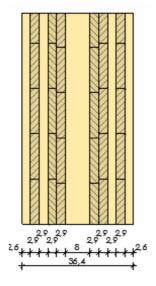
General data

Thickness of part Functionality Core layer Surface layer Construction Layers, left to right: Area density 25.0cm outer wall 80mm horizontal or vertical 7 layers v - h - d - K - d - h - v109kg/m²

Building physics data

Bulk density 435kg/m³ Thermal conductivity lambda value according to Hotbox measurement, FH Wels 0.079 W/mK – standard wall Fire protection Burn-off rate 0.9mm/min.

General data


Thickness of part30.6 cmFunctionalityouter wallCore layer80 mmSurface layerhorizontal or verticalConstruction9 layersLayers, left to right:v - h - v - h - d - K - d - h - vArea density 134kg/m^2

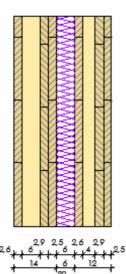
Building physics data

Bulk density435kg/m³Thermal conductivity lambda value
according to Hotbox measurement,
FH Wels0.079 W/mK – standard wallFire protection
Burn-off rate according to certificate 0.9mm/min.

H100-W36

General data

Thickness of part Functionality Core layer Surface layer Construction Layers left to right: Area density


36.4cm outer wall 80mm horizontal or vertical 11 layers v-h-v-h-d-k-d-h-v-h-v 159kg/m^2

Building physics data

435kg/m³ Bulk density Thermal conductivity lambda value according to Hotbox measurement, FH Wels 0.079 W/mK - standard wall Fire protection according to TU Graz REI 120

3) Soundproofing systems

General data

General uala	
Thickness of part	32.0cm
Functionality	partition wall
Layers	3
Construction	14cm H100 I 6cm HW I 12cm H100
Isolation by	6cm soft wood fibre plate
Area density	123kg/m ²

Building physics data

Bulk density Holz100 435kg/m³ Thermal conductivity lambda value not relevant Fire protection analogical to individual wall types burn-off rate acc. to certificate Soundproofing according to TU Graz Rw = 54dB

soundproofing

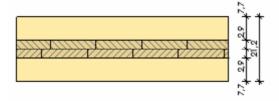
1.2 Ceiling systems H100-DE

Thoma Holz100 ceilings and roof parts consist of 70-80mm walers and wooden board layers in between.

Fitting direction:single-axis towards walersType of wood:spruce I fir I pine I larch

H100-DE17

Cross-section

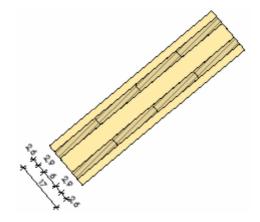


General data

Thickness of part 17.6cm Layers 3 Top and bottom waler7.7cm

H100-DE21

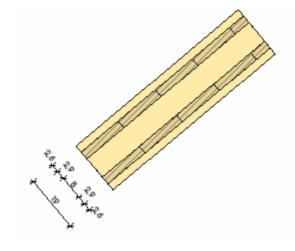
Cross-section


General data

Thickness of part 21.2cm Layers 4 Top and bottom waler7.7cm

1.3 Thoma Holz100 Roof systems H100-DA

H100-DA17

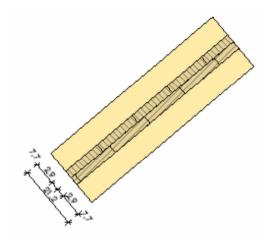


General data

Part thickness	17.0
Layers	5
Core layer	6.0cm

Usage: usual span widths and small snow loads

H100-DA19



General data

Part thickness	19.0
Layers	5
Core layer	8.0cm

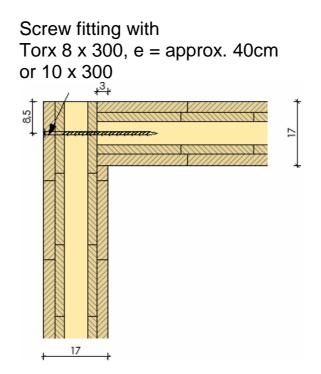
Usage: usual span widths and increased snow loads

H100-DA21

General data

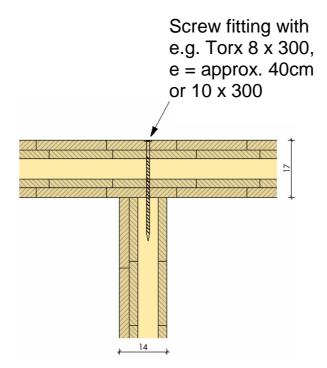
Part thickness21.2Layers4Top and bottom waler7.7cm

Usage: large span widths or large snow loads

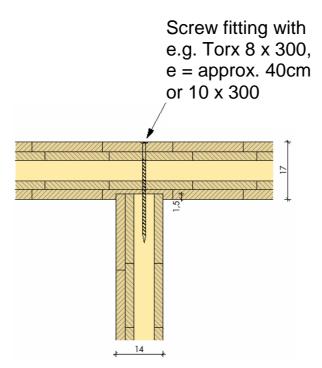

2. Details

- 2.1 Standard connections
- 1) Corner connection

Version: unrebated


Screw fitting with Torx 8 x 300, e = approx. 40cmor 10 x 300

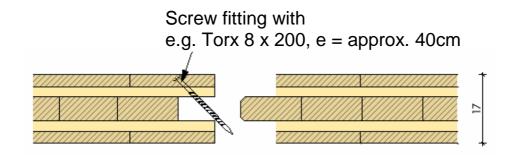
Version: rebated

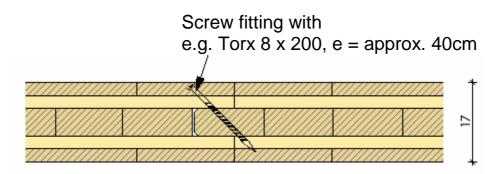


2) Joining of partition walls

Version: unrebated

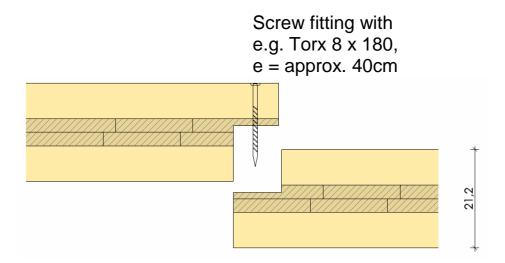
Version: rebated

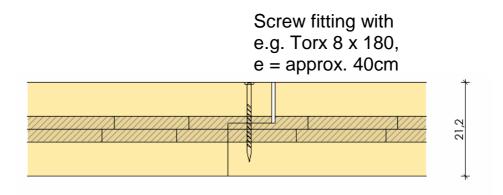

.**Th<u>o</u>ma**


3) Joining walls edge-to-edge

horizontal section

connection open

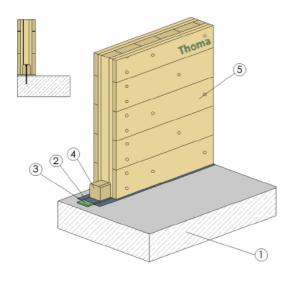

connection closed

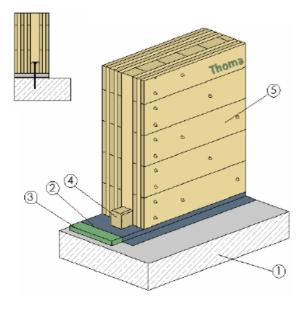


4) Joining ceilings edge-to-edge

connection open

connection closed




2.2 Other connections

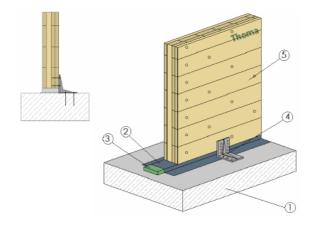
1) External walls to concrete

Thoma external wall H100-W17

Thoma external wall H100-W30

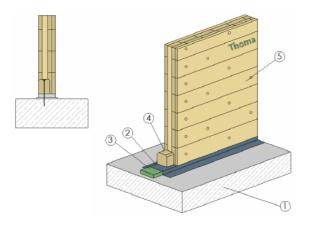
Description of layers

- 1 floor plate | foundation
- 2 insulation against rising damp
- 3 mortar bed precisely levelled, supporting blocks
- 4 Holz100 mounting joist (larch) anchoring via heavy duty anchor to the floor plate – dissipation of vertical forces, secured in position by screwing the Holz100 wall to the mounting joist from the outside
- 5 The Thoma Holz100 wall system, supporting according to static and building-physics requirements


Description of layers

- 1 floor plate | foundation
- 2 insulation against rising damp
- 3 mortar bed precisely levelled, supporting blocks
- 4 Holz100 mounting joist (larch) anchoring via heavy duty anchor to the floor plate – dissipation of vertical forces, secured in position
- 5 The Thoma Holz100 wall system, supporting according to static and building-physics requirements

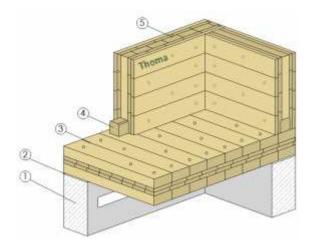
2) Internal walls to concrete


Version: with elbow connector

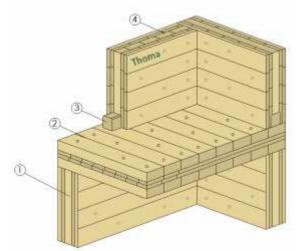
Description of layers

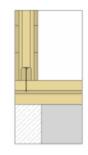
- 1 floor plate | foundation
- 2 insulation against rising damp
- 3 mortar bed precisely levelled, supporting blocks
- 4 Connected via BMF elbow connector for securing in position
- 5 Thoma Holz100 Wall system

Version: with Thoma mounting joist

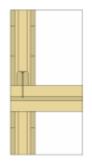

Description of layers

- 1 floor plate | foundation
- 2 insulation against rising damp
- 3 mortar bed precisely levelled, supporting blocks
- 4 Holz100 mounting joist (larch) anchoring via heavy duty anchor to the floor plate – dissipation of vertical forces, secured in position
- 5 Thoma Holz100 Wall system

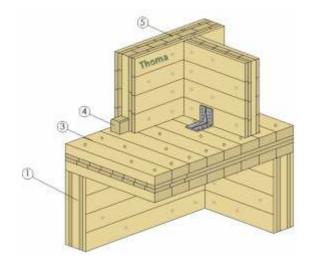



3) Joining to the H100 floor plate

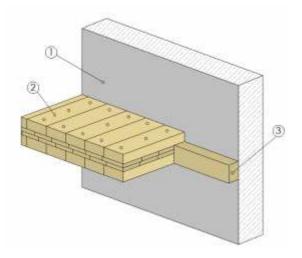
Version: crawl space with a Holz100 ceiling

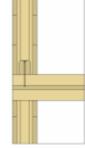


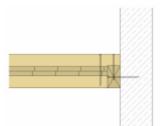
Joining an inserted ceiling, upper floor External wall – corner


- 1 Crawl space with sufficient cross ventilation
- 2 Damp barrier layer insulating the Holz100 ceiling
- 3 Holz100 ceiling according to static requirements
- 4 Holz100 mounting joist fitted directly to the Holz100 ceiling
- 5 The Thoma Holz100 wall system, according to static and building-physics requirements

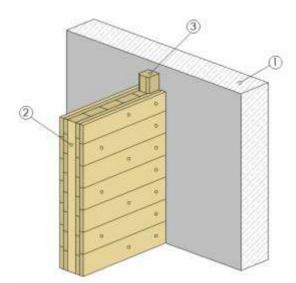
- 1 The Thoma Holz100 wall system, according to static and building-physics requirements
- 2 Holz100 ceiling according to static requirements
- 3 Holz100 mounting joist fitted directly to the Holz100 ceiling
- 4 The Thoma Holz100 wall system, according to static and building-physics requirements

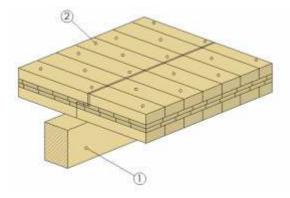


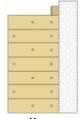

Joining an inserted ceiling, upper floor Joining to internal wall


4) Joining to an existing wall

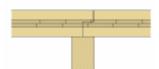
Joining the ceiling via edge beam


- 1 The Thoma Holz100 wall system, according to static and building-physics requirements
- 2 Holz100 ceiling according to static requirements
- 3 Holz100 mounting joist fitted directly to the Holz100 ceiling
- 4 The Thoma Holz100 wall system, according to static and building-physics requirements


- 1 existing wall
- 2 Holz100 ceiling system screw fitted to edge beam and additional support enforcement
- 3 edge beam screw fitted to existing wall

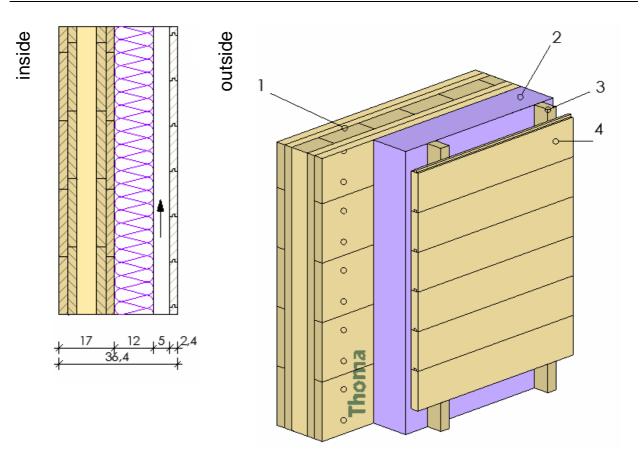


Joining the wall via mounting beam

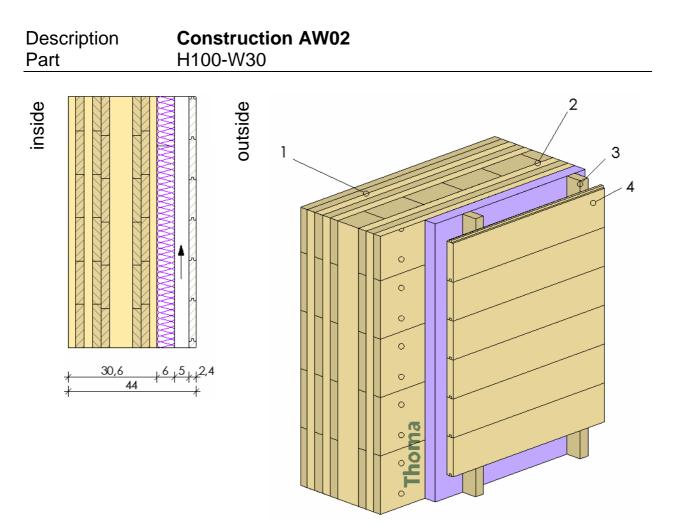


5) Ceiling supported on bearers

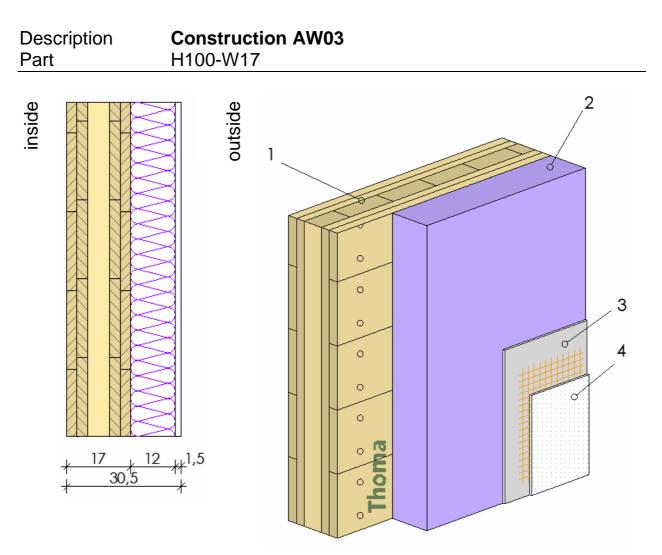
- 1 existing wall
- 2 Holz100 Wall system screw fitted to mounting beam
- 3 mounting beam screw fitted to existing wall


- 1. wooden bearer
- 2. Thoma H100 ceiling system

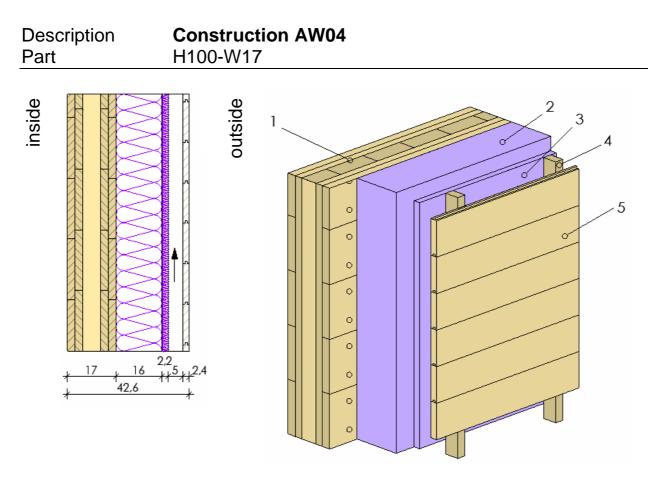
3. Constructions


3.1 External walls

Description	Construction AW01
Part	H100-W17

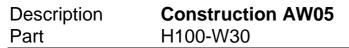

Layers			Technical construct	ion para	ameters
ITem	hickness m)	Description	Parameter		Unit
01 17	7.0	Thoma H100-W17	U-value	0.20	W/m ² K
02 12	2.0	soft wood fibre with	fire protection from	F60B	
		tongue and groove	the inside		
03 5.	0	ventilation slats vertical	area density	115	Kg/m ²
04 2.	.4	external formwork			
36	6.4	Complete structure			

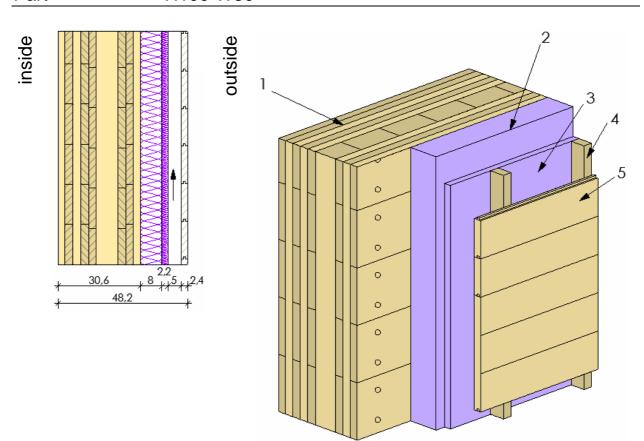
Layers		Technical construct	ion par	ameters
Item Thickn (cm)	Description	Parameter		Unit
01 30.6	Thoma H100-W30	U-value	0.18	W/m ² K
02 6.0	soft wood fibre with	fire protection from	F90B	
	tongue and groove	the inside		
03 5.0	ventilation slats vertical	area density	160	Kg/m ²
04 2.4	external formwork			
44.0	Complete structure	-		



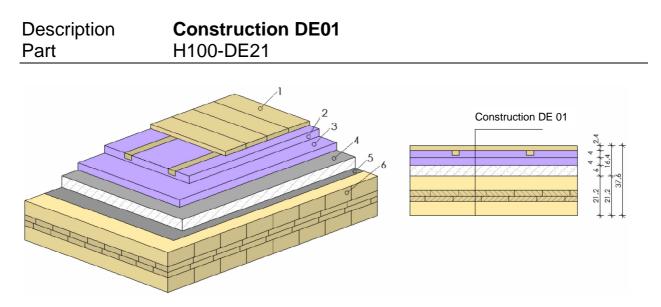
Layers

Technical construction parameters

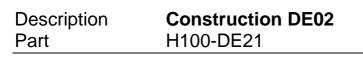

Item	Thickness (cm)	Description	Parameter		Unit
01	17.0	Thoma H100-W17	U-value	0.20	W/m ² K
02	12.0	soft wood fibre as	fire protection	F60B	
		plaster base	from the inside		
03	-	system plaster according to manufacturer's information	area density	110	Kg/m ²
04	approx. 1.5				
	30.5	Complete structure			

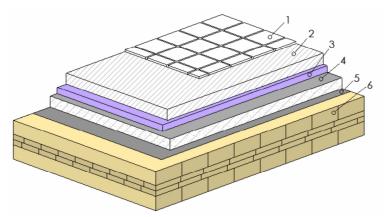


Laye	rs		Technical construct	ion para	ameters
Item	Thickness (cm)	Description	Parameter		Unit
01	17.0	Thoma H100-W17	U-value	0.15	W/m ² K
02	16.0	soft wood fibre	fire protection from the inside	F60B	
03	2.2	soft wood fibre with tongue and groove	area density	130	Kg/m ²
04	5.0	ventilation slats vertical			
05	2.4	external formwork			
	42.6	Complete structure			

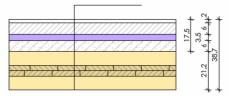


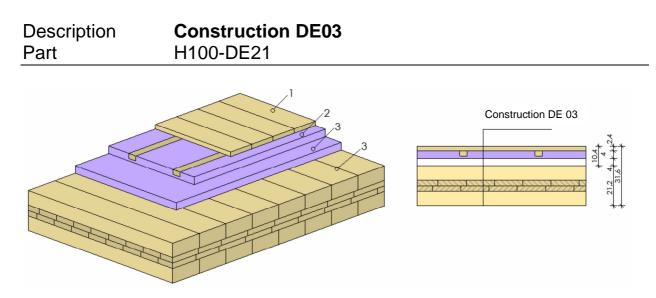
Laye	rs		Technical construct	ion para	ameters
Item	Thickness (cm)	Description	Parameter		Unit
01	30.6	Thoma H100-W30	U-value	0.15	W/m ² K
02	8.0	soft wood fibre	fire protection from the inside	F90B	
03	2.2	soft wood fibre with tongue and groove	area density	165	kg/m ²
04	5.0	ventilation slats vertical			
05	2.4	external formwork			
	48.2	Complete structure	-		


3.2 Inserted ceilings



Layers top to bottom


Item	Thickness (cm)	Description
01	2.4	Thoma solid wood
		floorboards
02	4.0	interlocking soft wood
		fibre board
03	4.0	soft wood fibre
04	6.0	filler
05	-	trickle protection sheet
06	21.2	Thoma H100-DE21
	37.6	Complete structure

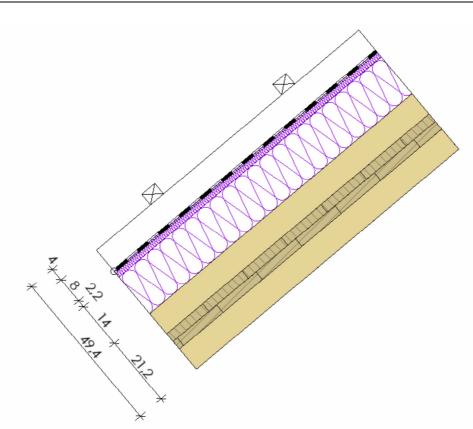

Construction DE 02

Layers top to bottom

Item	Thickness (cm)	Description
01	2.0	floor tiles
02	6.0	screed (or 7.0cm heated
		screed)
03	-	separating layer
04	3.0	impact sound insulation
05	8.0	filler
06	-	trickle protection sheet
07	21.2	Thoma H100-DE21
	40.2	Complete structure

Layers top to bottom

Item	Thickness (cm)	Description
01	2.4	Thoma solid wood
		floorboards
02	4.0	interlocking soft wood
		fibre board
03	4.0	soft wood fibre
04	21.2	Thoma H100-DE21
	31.6	Complete structure

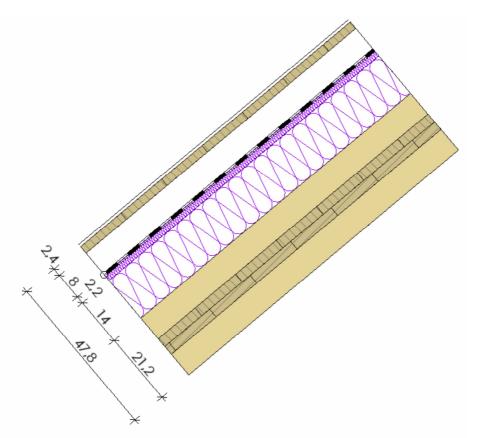


3.3 Pitched roof constructions

Construction DA01

H100-DA21

Description	
Part	


Layers	top	to	bottom
--------	-----	----	--------

Technical construction parameters

Item	Thickness (cm)	Description	Parameter		Unit
01	-	roof tiles	U-value	0.16	W/m ² K
02	4.0	roof battens			
03	8.0	counter battens			
04	2.2	soft wood fibre –			
		water-bearing layer			
05	14.0	soft wood fibre			
06	21.2	Thoma H100-DA21			
	49.4	Complete structure	-		

DescriptionConstruction DA02PartH100-DA21

Layers top to bottom	
----------------------	--

Technical construction parameters

Item	Thickness (cm)	Description	Parameter		Unit
01	-	sheet metal covering	U-value	0.16	W/m ² K
02	2.4	rough shuttering			
03	8.0	ventilation/ counter			
		battens			
04	2.2	soft wood fibre –			
		water-bearing layer			
05	14.0	soft wood fibre			
06	21.2	Thoma H100-DA21	_		
	47.8	Complete structure			

3.4 Flat roof constructions

Description Part	Construction DA03 H100-DA21	
		Construction DA 03

Layers top to bottom

Technical construction parameters

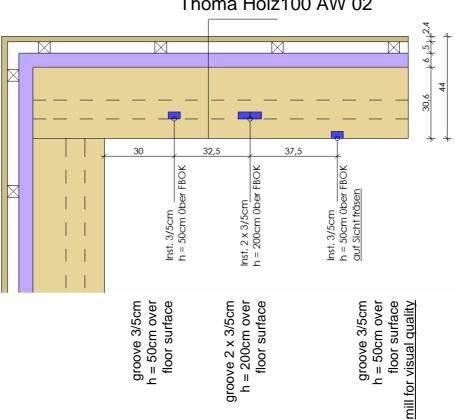
Iten	n Thickness (cm)	Description	Parameter		Unit
1	5.0	gravel	U-value	0.17	W/m ² K
2	0.3	roof waterproofing membrane			
3	12.0	soft wood fibre pitch insulation			
4	10.0	soft wood fibre panel			
5	-	vapour barrier			
6	21.2	Thoma H100-DE21			
	48.5	Complete structure	-		

4. Installations

The planning of installations, both for electric wiring and water pipes plays an important role when constructing a solid wood house.

As a standard, the Holz100 parts are manufactured in high visual quality. Should it be required for a wall or a ceiling surface to keep its Holz100 look, grooves and openings for installations are milled into the wood by the manufacturer.

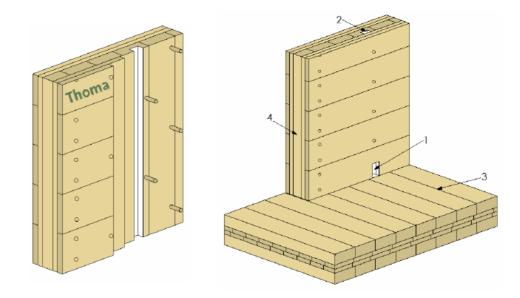
Planning:


Thoma has a Planning Department who draw the Holz100 working plans, and resulting from that also the work preparation plans for the Holz100 production.

We incorporate the Client's design into our planning.

Should installations be drawn on the plan before it's handed in, we suggest the following plan layout:

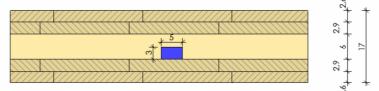
Layout presentation:


As a standard, installation grooves are milled into the core layer of a Holz100 wall.

System construction according to Thoma Holz100 AW 02

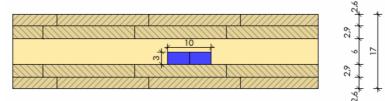
Installations - System overview

1) The planned installation duct is cut out by the manufacturer in the floor area.

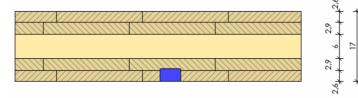

2) Standard installation groove 3/5cm

3) Holz100 Ceiling system

Thoma Holz100 Wall system


Standard installation

milled in at factory, size 3/5cm


Double installation

milled in at factory, size 3/10cm

Grooves milled for visual quality

can be done on site of assembly, any size within the surface layers

Summary table NEW Symbol Types of parts

Walls

Old symbol	Thickness (cm)	New symbol
wall type A	12.0	H100-W12
wall type B	14.0	H100-W14
wall type C	17.0	H100-W17
wall type D1	20.0	H100-W20
wall type D2	25.0	H100-W25
wall type E	30.6	H100-W30
wall type F	36.4	H100-W36

Ceilings

Old symbol	Thickness (cm)	New symbol
ceiling type DE I	17.6	H100-DE17
ceiling type DE II	21.2	H100-DE21

Roof

Old symbol	Thickness (cm)	New symbol
roof panel type DA I	17.0	H100-DA17
roof panel type DA II	19.0	H100-DA19
roof panel type DA III	21.2	H100-DA21

Legal notice

The content of this catalogue constitutes intellectual property of the company Ing. Erwin Thoma, and is protected by copyright. The system solutions are to be viewed as recommendations. The publisher assumes no liability. Reproduction requires publisher's prior consent in writing. The parts catalogue is only valid in its complete form.

Ing. Erwin Thoma Holz GmbH Version September 2012